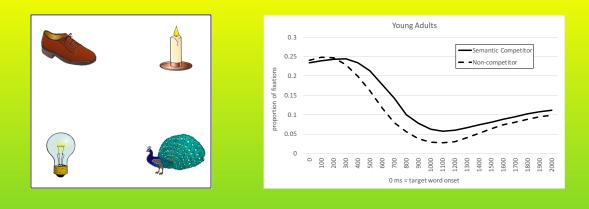
The dynamic generalized linear mixed effect model: Modeling intensive binary time-series data from the visual-world eye-tracking paradigm with GLMM with crossed random effects

Sarah Brown-Schmidt and Sun-Joo Cho (Vanderbilt University) sarahbrownschmidt@gmail.com

Background

The Visual World eye-tracking Paradigm (Tanenhaus et al., 1995) produces intensive categorical time-series data indicating which of one or more object categories is being fixated at each time point.



Why the need for the dGLMM?

The literature lacked a model specification that could:

- Analyze the full time course of data without aggregation over time-points, trials, items, and/ or participants
- Analyze the data in categorical (e.g., binary) form
- Model crossed random effects
- Model temporal (trend) effects
- Model autocorrelation (AR) among adjacent time-points (estimated to be very high in VWP data with *r* values typically exceeding .9 for 10ms timebins)

Implementatio

How to format your data to impla dGLMM:

- Pick analysis time-window a-p
- Pick temporal grain size (e.g.,
- Code fixation data in binary fo (e.g., target vs. non-target)
- Save the data in long form
- Calculate the order of the AR: or AR(2), etc.
- Add the AR to the dataset (will require baseline time-points to calculate AR for first time-point
- Remove starting time-point

			fixed	fixed		targe
trial ID	subject ID	item	effect 1	effect 2	time	fixatio
273	1	balloon	0.5	0.5	180	
273	1	balloon	0.5	0.5	190	
273	1	balloon	0.5	0.5	200	
273	1	balloon	0.5	0.5	210	
273	1	balloon	0.5	0.5	220	
273	1	balloon	0.5	0.5	230	
273	1	balloon	0.5	0.5	240	
273	1	balloon	0.5	0.5	250	
273	1	balloon	0.5	0.5	260	
273	1	balloon	0.5	0.5	270	
273	1	balloon	0.5	0.5	280	
273	1	balloon	0.5	0.5	290	
273	1	balloon	0.5	0.5	300	
						-

Fit the model in glmer:
 mymodel ← glmer (y ~ 1 + AR1
 condition + (1 | trialID) + (1+AR
 subjectID) + (1+AR1 | item), fa
 binomial, data = mydata)

References:

Cho, S.-J., Brown-Schmidt, S., & Lee, W.-y. (2018). Autoregressive generalized linear mixed effect models with crossed random effects: An application to intensive binary time series eye-tracking data. *Psychometrika, 83,* 751-771. Cho, S.-J., Brown-Schmidt, S., Naveiras, M., & De Boeck, P. (forthcoming). A dynamic generalized mixed effect model for intensive binary temporal-spatio data from an eye tracking technique. Maryland Assessment Research Center (MARC). Tanenhaus, M. K., Spivey-Knowlton, M. J., Eberhard, K. M., & Sedivy, J. C. (1995). Integration of visual and linguistic information in spoken language comprehension. *Science, 268*(5217), 1632-1634.

Acknowledgement: NSF BCS 15-56700 to SBS.

Look for example data and code at sarahbrownschmidt.com/cv/

n	Benefits				
Iement oriori 10ms) orm AR(1),	 Why might you want to use dGLMM? Test hypotheses about overall level of activation of, e.g., the target across conditions, while modeling: crossed random effects temporal (trend) effects unaggregated data Ignoring AR can result in underestimated SEs and increased type-1 error rate bonus: can test if AR varies systematically across, and activation of the systematically across. 				
t ons AR(1) 0 NA 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1	 e.g. persons or conditions The dGLMM provides very good fits to VWP data Conclusions The dGLMM (Cho et al. 2018) offers a way to model intensive categorical time-series data with crossed random effects, temporal (trend) effects, and captures autocorrelation present in the data. Extensions of the dGLMM can additionally 				
.+ R1 mily =	 model spatial information (Cho et al., forthcoming), which can vary across persons and items. Visit poster for application of dGLMM: #D9 On the necessity of hippocampus in lexical-semantic mapping in language processing. 				
crossed random effects. An application to intensive binary time series					